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ABSTRACT

Array DBMSs manage big N -d arrays, are not yet widely known,
but are experiencing an R&D surge due to the rapid growth of array
volumes. Cellular automata (CA) operate on a discrete lattice of
cells that can be modeled by an N -d array. CA are successfully
applied to model fire spread, land cover change, road traffic, and
other processes. We made traffic CA simulations possible by array
DBMS due to novel components: native UDF language, proactive
exec plans, convolution operator, retiling strategy, array versioning,
locks, virtual axes, etc. A database approach to CA brings powerful
parallelization, data fusion, array processing, and interoperability
to name a few. To our best knowledge, our work is the first to
run end-to-end CA simulations completely inside array DBMS: we
enable array DBMS to simulate the physical world for the first time.
Paper homepage: http://sigmod2021.gis.gg/
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1 INTRODUCTION

An array DBMS manages N -d array storage, processing, and even
visualization in some cases. N -d arrays are natural models for many
important data types [3, 7, 36]. The first array DBMSs and add-ons
appeared long ago [6, 9, 14, 40, 49]. However, only the last decade
flourished with a significant body of array management R&D: array
DBMSs [12, 43, 44], array stores [15, 39, 54], array engines [13, 19,
20, 22], and other array-oriented systems [5, 26, 29, 42, 53, 55].

The array DBMS R&D area is quite young and many R&D oppor-
tunities are attractive and unexplored. For example, novel indexing
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techniques accelerate function evaluation [46] and array joins [57].
Only recently, top-k queries [10], similarity array joins [58], view
maintenance [60], distributed caching in array DBMS [59] were first
introduced. Researchers explore compression potentials [25, 31, 45],
interactive visualization [4], and machine learning [38, 47, 53].

This paper complements the aforementioned related work by
exploring a rather unusual application of a database system for
the first time: physical world simulation. This kind of workload
has been traditionally implemented on diverse types of grids and
meshes that can be modeled as an N -d array [3, 11, 36]. As N -d
array is at the core of array DBMS, it is logical to apply array DBMSs
to physical simulations to benefit from array DBMS capabilities.

Cellular automata seem to be a good starting point for integrating
simulation into array DBMS due to having N -d array model for its
lattice and numerous successful applications for edge detection [16,
21], modeling urban growth [17, 24, 33], fire spread [18, 23, 37], land
cover change [28, 50], road traffic [27, 30, 51], and other phenomena.

To demonstrate the applicability of array DBMS to CA modeling,
we take some of the most challenging CA: traffic CA (TCA). We take
a complex road traffic model with multiple lanes, road intersections
and traffic lights. Vehicles have different lengths, moving directions,
varying speed, can change lanes, directions, and overtake each other.
We show that ChronosDB [43, 44], with extensions, is capable of
effectively dealing with all simulation intricacies.

Unlike ad-hoc CA implementations, array DBMSs may serve as a
framework for CA modeling as they provide numerous capabilities
out-of-the-box, e.g. parallel processing. The support for CA models
can also be a step towards supporting evenmore general approaches
like agent-based modeling [52]. Finally, CA models challenge array
DBMSs helping them to become more robust systems in general.

At a glance, array DBMSs may seem to readily support CA sim-
ulations. However, an array DBMS requires appropriate extensions
to leverage its solid codebase for CA simulations.

Our contributions in this paper are as follows. First of all, we iden-
tify a novel R&D direction and novel application of array DBMSs:
physical world simulation. The very fact of the possibility of an
array DBMS application to end-to-end physical simulations is valu-
able. We believe this may inspire the related future work.

Next we show how to extend ChronosDB [43, 44] to effectively
support CA simulations and provide unique benefits inherent to
array DBMSs and ChronosDB in particular. We showcase that
ChronosDB array DBMS can be used for end-to-end CA simula-
tions, from initialization to computing the resulting statistics (the
goal of CA simulations). Our performance evaluation shows that
ChronosDB is quite efficient for CA simulations compared to a
non-DBMS approach. Finally, we discuss array DBMS benefits for
CA simulations, future R&D opportunities and conclude.
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Figure 1: Traffic Cellular Automata: Physical Environment, Cells’ States & Neighborhoods, and Transition Rules’ Parameters

2 TRAFFIC CELLULAR AUTOMATA (TCA)

Road traffic simulation is used to plan road changes, optimize traffic
lights, analyze throughput, integrate objects to name a few [2]. TCA
yield realistic road traffic statistics at the macroscopic level [30].We
constructed a complex automaton based on the literature [30] to
challenge array DBMS principles, e.g. vehicles have several prop-
erties. Now we describe our model without referring to any array
DBMS. Four main ingredients constitute CA: the physical environ-
ment, cells’ states & neighborhoods, and local transition rules.

2.1 Physical Environment

We consider the entire road network as a 2-d lattice (a 2-d array).
We take a traditional cell size of 7.5 m2 [30]. A lattice cell state
indicates an impassable part, traffic lights, a lane without a vehicle,
or a vehicle with a non-negative speed. We account for vehicles
of different lengths (li denotes the length of vehicle i): a vehicle
occupies an integer number of maximum 3 consecutive cells, fig. 1.

In our model, we also consider road intersections (RIs). Each
road consists of multiple lanes (3 in our model, without loss of
generality). Vehicles are allowed to change lanes, e.g. in order to
overtake a slower-moving vehicle. They can move west-east (WE)
or south-north (SN) and change direction at a RI [30].

In our model, we locate Traffic Lights (TL) at the bottom left at
each RI. TL are red for WE vehicles and green for SN vehicles or
vice versa. In addition, TL can be yellow for all vehicles.

We use a traditional example of a TCA grid: an artificial road
map resembling the Manhattan Grid, New York City, similar to [51].
Initially vehicles are scattered randomly on the grid. When a vehicle
reaches a grid border, it appears at the opposite grid side.

2.2 Cells’ States & Neighborhoods

Cells change their states at discrete time steps (iterations) of 1.2 sec-
onds as in [30]. TCA evolve in time and space by applying rules to
cells. A rule takes into account a cell’s local neighborhood to take
state transition decisions. Rules are applied to all lattice cells simul-
taneously (drivers make decisions independently of each other, in
parallel, but obeying some generally accepted rules).

At each time step, a vehicle can stay in the same cell (no move),
advance some cells forward, change its lane (the same road) or road
(at a RI). The maximum vehicle speed smax = 3 cells/step.

All cells in a window of 11×11 cells constitute the local neighbor-
hood of a cell: the cell itself, 37.5 meters (5 cells) back and forward.

2.3 Local Transition Rules

A rule must check a set of constraints before deciding on the state
change. For example, a rule for the left lane change must check for
too close or fast-moving vehicles on the left to avoid collisions.

Move Forward Rules. TCA often use the Nagel-Schreckenberg
one-dimensionalmodel to advance a vehicle along the same lane [35].
The model defines four rules applied sequentially to the speed sk (t)
and position xk (t) of vehicle k at time step t : (1,2) acceleration and
braking: sk (t) = min{sk (t − 1) + 1,dkp (t − 1) − li , smax − lk + 1},
(3) randomization: random(t) < const ⇒ sk (t) =max{0, sk (t) − 1},
(4) movement: xk (t) = xk (t − 1) + sk (t), where dkp is the distance
(number of cells) to the nearest vehicle p ahead of vehicle k .

Here a vehicle can stop directly behind a vehicle in front of it
to avoid collisions. Rule 3 accounts for individual driver behavior.
Note that the original model did not account for vehicle lengths.

Lane Change Rules. Let us first describe lane changing rules
from [30] which we will further complicate. A left/right lane change
means shifting a vehicle a cell left/right. Certain constraints must be
met to make the left lane change possible for vehicle j: di j − li > 0.
This requires that there is no vehicle directly in the left cell and the
closest vehicle i in the left lane, behind vehicle j , is at least one cell
away [30]. Note that we added li to the original constraints.

We extend the constraint to account not only for inter-vehicle
distance di j , but also for vehicle speed si and allow left lane change
if di j − li − si > 0, fig. 1. The right lane change rule is the same.

In ourmodel, we allow a left lane change for vehicle j if a vehicleq
in front of j is moving slower, e.g. sq < sj , fig. 1. To avoid scheduling
conflicts, left and right lane changes are allowed only during odd
and even time steps respectively. All lane changes are probabilistic.

Traffic light rules. TL help to avoid collisions at RIs. In our
model, TL are green for γ = 10 ticks and turn yellow afterwards.
TL are yellow until there are vehicles at the RI. Then TL turn green
for the road for which TL were red before the yellow light. Vehicles
apply an additional rule to account for TL: if TL are red or yellow,
sq (t) = min(max(dqT L − lq , 0), sq (t)), where dqT L is the distance
to the nearest TL on the road ahead, fig. 1.

Road Crossing Rules. At a RI, in our model, a vehicle goes
forward if it is not in an outer lane of a road. Otherwise, a WE/SN
vehicle may randomly decide to go forward or turn left/right if it
is in the left/right-most lane. Before turning, a vehicle checks for
sufficient space in the lane to the left/right: dbc > lb , where dbc is
the distance to the nearest vehicle in the lane to the left/right, fig. 1.
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Figure 2: Convolution Window, Speed of ChronosDB vs. Hand-Written Code, Native Array DBMS UDF for the Simulations

3 TRAFFIC SIMULATION BY ARRAY DBMS

Now we describe a holistic simulation workflow and answer the
following questions. Which capabilities, relevant to CA simulations,
do modern array DBMSs provide? Why can they not be readily ap-
plied to CA simulations? Which novel extensions did we develop to
enable end-to-end CA simulations completely inside ChronosDB?
Why is ChronosDB one of the best choices for CA simulations?

3.1 Simulation Setup

Let a 2-d array be the mapping A : D1 × D2 7→ T, Di = [0, li ) ⊂ Z,
0 < li is a finite integer, i ∈ {1, 2}, and T is a numeric type, e.g.
according to ISO/IEC 14882. li is said to be the size of ith dimension.
We refer to a cell value of A of type T with integer indexes (x1, x2)
as A[x1, x2], where xi ∈ Di . We denote a missing value by NA [43].

The physical environment and cells’ states can be modeled as 2-d
arrays. Novel array DBMS extensions are driven by our new flexible
convolution operator and native UDF language enabling us to apply
local transition rules and code the simulation logic respectively.

Input: 2-d arrays (lat × lon): tca.lane (road grid, cell values are
−1: impassable area, 0/1: a lane with WE/SE moving direction, 2: a
road intersection, 3: traffic lights), tca.speed and tca.length (ini-
tial vehicles’ speeds and lengths, a vehicle of any length is modeled
by a cell having its rear bumper; note that we do not store vehicle
positions explicitly as they are implicitly coded by cell coordinates).

Output: history 3-d arrays (time × lat × lon): speedh and lenh
(vehicles’ speeds and lengths for each time step).

Goal: run the simulations for T time steps to derive statistics
from history arrays (section 3.6) for decision support (section 2).

3.2 Novel Convolution Operator

A CA rule resembles a traditional convolution operator (CO) [48].
However, a CA rule is muchmore complex: it is a procedure account-
ing for constraints and updating any cells within the neighborhood.
To support CA simulations, we introduce a new CO for array DBMS.

The convolution operatorΞ : K,A1,A2, . . . ,An 7→ B1,B2, . . . ,Bm
takesn input and yieldsm output 2-d arrays, all shaped l1×l2. A ker-
nel K ⟨k1,k2⟩ is the mapping K : ax1 ,a

x
2 , . . . ,a

x
n 7→ bx1 ,b

x
2 , . . . ,b

x
m

of n input (windows ofAj ,fig. 2) andm output 2-d arrays, all shaped
2k1+1×2k2+1, indexed by (y1,y2) : yi ∈ [−ki ,+ki ] ⊂ Z, axj [y1,y2]
= Aj [x1 + y1, x2 + y2], j ∈ [1,n], axj [y1,y2] = NA if xi + yi < Di ,
ki 6 |li | div 2, Bq [u1,u2] ∈ {bxq [y1,y2] : xi + yi = ui } (choose the
latest produced value), where q ∈ [1,m], x = (x1, x2), xi ,ui ∈ Di .

To compute K , users provide UDFs in Java. ChronosDB iterates
overxi ∈ Di , forms readonly input andwritable output windows, all
equipped with helper functions, e.g. rotate 90/180/270° (adjusts the
local coordinate system to use the same code for WE/SN vehicles).

There were efforts to develop dedicated languages for CA, but
CA rules are inherently imperative and sophisticated. To date, it is
more practical to use a modern language for convolution UDFs.

Unlike conventional convolution operators, our CO supplies a
kernel several input windows and allows a kernel to modify an
arbitrary number of cells throughout multiple output windows.
However, this requires novel array retiling strategy (see below).

3.3 Native UDF Language for Array DBMS

We present the first native array DBMS language for UDFs. Al-
though most array DBMSs can run Python/C++ UDFs, they are
treated as black-boxes that cannot be optimized by DBMSs [6, 12,
43]. In addition, query languages and non-native UDFs are unable
to organize iterations inherent to physical simulations. It is possi-
ble to run iterations query by query, but a query output must be
completely materialized before running the next query and looking-
ahead optimizations are unavailable as the “big picture” is unclear.

With strict formal definitions of array operations [43], compiler
techniques (e.g., loop unrolling [1]), and our new extensions (e.g.,
array versioning & locks), we build execution plans for several iter-
ations ahead (proactive exec plans). In this way we avoid redundant
materialization and overheads of scheduling individual queries.

Native UDFs consist of commands that have the syntax similar
to command line tools. Most users are familiar with such syntax
and hopefully will find it easy to code UDFs. A part of the UDF for
TCA simulations is in fig. 2. To retain the initial arrays, we start
by copying tca.speed & tca.length to intermediate $speed &
$length arrays which are subject to optimizations, e.g. they mostly
reside in RAM. The loop will be executed 100 times.

The calc command runs a convolution operator that is supplied
as a Java UDF: a *.java file that contains the specified method. The
file is compiled to bytecode by ChronosDB for faster execution.
calc accepts/produces an arbitrary number of input/output arrays,
where the -ot parameter specifies T. Quantiles :in and :out dis-
tinguish between the in/out arrays as their number is not fixed. The
--overwrite flag forces calc to delete the output arrays if they
exist and create new output arrays with the same name.

An iteration ends by appending new 2-d arrays $speed& $length
to 3-d arrays speedh & lenh along the virtual time axis (see below).
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The UDF in fig. 2 looks small, but is challenging to execute. For in-
stance, during loop unrolling, the same array name appears several
times: e.g., the last calc command deletes the current $speed array
and creates a new array with the same name. As we are building a
proactive exec plan, we must be able to keep and address all arrays
(deleted and new) and to read/write all of them simultaneously.

3.4 Additional Improvements

Novel Retiling Strategy. Array DBMSs partition arrays into tiles
to parallelize execution [32]. To support traditional COs, arrays
are tiled with overlap [48]. However, our CO can update any set
of cells: vehicles do not disappear and can move between the tiles.
Hence, current tiling schemes are unsuitable for the new workload.
To enable parallel CA simulations, we equipped ChronosDB with
a new array retiling strategy to properly update array tiles and
efficiently exchange cell values between the tiles at each iteration.

Array Versioning. To maintain several arrays with the same
name during runtime, we introduced array versioning. ChronosDB
refers to an array by its name and version. This allows us to build
execution plans with deleted arrays upon which depend future, but
not yet produced arrays. This is totally transparent to users, but
required deep improvements to ChronosDB.

Array Locks are required for two reasons: to prevent other
UDFs to operate on arrays from the common namespace and to
control the state of arrays (exists, deleted, newer version created,
etc.). Locks are always used in conjunction with array versioning.

Virtual axes. A traditional implementation of the append op-
erator in fig. 2 coverts the input 2-d array into a 3-d form and
may restructure the target 3-d array [12]. As append is frequent
in our scenario, this may incur a large overhead. We introduced
virtual axes which allow us to avoid restructuring arrays during
split/merge operations, e.g. converting an N -d array to an (N +1)-d
array. A virtual axis does not physically exist in an array and the
cost of append is equal to copying an array. Note that we also
extended ChronosDB to run operators on arrays with virtual axes.

3.5 Performance evaluation

We compared ChronosDB to a hand-written single-threaded code.
Many TCA implementations are not maintained [8], not freely
available [2], or do not implement the same set of rules as our
model [34]. Hence, we ran the Java UDFs outside ChronosDB on
input arrays shaped 4096 × 256 (Intel Core i5 2.5GHz, Windows 10,
256 GB SSD, 12 GB RAM). “DBMS Serial” shows no parallelization
capabilities, “DBMS Parallel” runs simulations in 2 threads, fig. 2.

A considerable portion of time is spent for scheduling when the
number of iterations is small. Almost 10 seconds is spent on com-
piling the Java UDFs. However, the performance of ChronosDB
becomes comparable to a hand-written code when the number of
threads and iterations increase. Please, recall that ChronosDB does
not only run the simulations, but also provides many other benefits.

3.6 Array DBMS Shortcomings & Benefits

3.6.1 Shortcomings. Currently, ChronosDB introduces schedul-
ing overhead to CA simulations and users need to write 2 types of
UDFs: in Java and a new, but relatively simple language. Hence, nu-
merous benefits outweigh a few ‘cons’ against using ChronosDB.

3.6.2 Benefits. Nowwe showcase the benefits of usingChronosDB
for CA simulations. In this way, we also answer the question why
ChronosDB is an excellent choice for this workload.

Data ingestion and fusion. CA rules may use other datasets,
e.g. Digital Elevation Model or Surface Temperature (ST). To illus-
trate this benefit, we added a rule random(t) < const & ST < θ ⇒

sk (t) = max{0, sk (t) − 1} (too low ST may slow down a vehicle):
note the tca.temperature array in fig. 2. We used ChronosDB to
prepare (ingest, resample, and slice) Landsat 8 satellite data for ST.

Automatic parallelization. ChronosDB partitions arrays into
subarrays and runs the simulation independently on subarrays in
parallel, managing all necessary data exchanges between them.

Debugging UDFs. It is easy to debug step-by-step TCA UDFs
in Java used for calc commands, e.g. in IntelliJ IDEA. Just put
TCA.java in a module visible for the IDE. Its powerful debugger
makes it easy to code UDFs, track TCA decisions, and explore
convolution windows rendered by toString() as ascii 2-d maps
showing nearby vehicles’ speeds/lengths/locations & traffic lights.

Interactive visualization is essential for data understanding.
ChronosDB provides array imagery via the open, popular proto-
col [56]. We extended ChronosDB to serve N -d arrays via WMTS,
so itsWebGUI [44] can now queryChronosDB to slice speedh/lenh
and show $speed/$length for iteration step i on an interactive web
map or animate speedh/lenh for all steps; see the paper homepage.

Data management: archive, query & compare the simulations.
Interoperability. ChronosDB storage layer is built on top of

raw files in standard formats. Simulation arrays are full-fledged,
georeferenced, GeoTIFF files readily accessible to other software.
ChronosDB is also an HTTP server: users can download any array
via HTTP. To showcase the benefit, at the paper homepage, we
visualized simulation arrays in QGIS [41], a free and popular GIS.
It is also possible to add ChronosDB as a WMTS layer in QGIS.

End-to-end simulations. ChronosDB serves all phases of the
simulations within the single system: even computing statistics (the
goal of simulations). For example, typical TCA simulation statistics
include mean traffic density (the mean number of vehicles which
passed through a cell) and space-mean speed (the mean vehicle
speed for each cell) [30, 51]. A user can use an aggregation operator
to compute those and interactively explore the results via WMTS.

4 CONCLUSIONS AND R&D OPPORTUNITIES

We presented a novel application of array DBMSs: physical simula-
tions. As an example, we used road traffic cellular automata (TCA).
For the first time, physical simulations run entirely inside an array
DBMS. We had to introduce several extensions to the ChronosDB
array DBMS to enable the simulations. It provides a wealth of ben-
efits like automatic parallelization and interoperability.

Our work provides a number of future R&D opportunities. For
example, load balancing strategies are required for irregularly dis-
tributed objects in input arrays. Efficient storage of sparse arrays
would be beneficial (currently the grid array has only 5 distinct val-
ues stored uncompressed). Novel indexing techniques could allow
skipping batches of missing values to avoid wasting iteration time.

Future work includes the application of array DBMSs to other
fields like edge detection, fire spread, urban growth, land cover
change, and other areas of cellular automata simulation.
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