
Convergence of Array DBMS and Cellular Automata:
A Road Traffic Simulation Case

Ramon Antonio Rodriges Zalipynis
HSE University
Moscow, Russia
rodriges@gis.land

ABSTRACT

Array DBMSs manage big N -d arrays, are not yet widely known,
but are experiencing an R&D surge due to the rapid growth of array
volumes. Cellular automata (CA) operate on a discrete lattice of
cells that can be modeled by an N -d array. CA are successfully
applied to model fire spread, land cover change, road traffic, and
other processes. We made traffic CA simulations possible by array
DBMS due to novel components: native UDF language, proactive
exec plans, convolution operator, retiling strategy, array versioning,
locks, virtual axes, etc. A database approach to CA brings powerful
parallelization, data fusion, array processing, and interoperability
to name a few. To our best knowledge, our work is the first to
run end-to-end CA simulations completely inside array DBMS: we
enable array DBMS to simulate the physical world for the first time.
Paper homepage: http://sigmod2021.gis.gg/

CCS CONCEPTS

• Information systems → Parallel and distributed DBMSs;
Geographic information systems.

KEYWORDS

Array DBMS; cellular automata; urban traffic; physical simulation

ACM Reference Format:

Ramon Antonio Rodriges Zalipynis. 2021. Convergence of Array DBMS
and Cellular Automata: A Road Traffic Simulation Case. In Proceedings of
the 2021 International Conference on Management of Data (SIGMOD ’21),
June 20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3448016.3458457

1 INTRODUCTION

An array DBMS manages N -d array storage, processing, and even
visualization in some cases. N -d arrays are natural models for many
important data types [3, 7, 36]. The first array DBMSs and add-ons
appeared long ago [6, 9, 14, 40, 49]. However, only the last decade
flourished with a significant body of array management R&D: array
DBMSs [12, 43, 44], array stores [15, 39, 54], array engines [13, 19,
20, 22], and other array-oriented systems [5, 26, 29, 42, 53, 55].

The array DBMS R&D area is quite young and many R&D oppor-
tunities are attractive and unexplored. For example, novel indexing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3458457

techniques accelerate function evaluation [46] and array joins [57].
Only recently, top-k queries [10], similarity array joins [58], view
maintenance [60], distributed caching in array DBMS [59] were first
introduced. Researchers explore compression potentials [25, 31, 45],
interactive visualization [4], and machine learning [38, 47, 53].

This paper complements the aforementioned related work by
exploring a rather unusual application of a database system for
the first time: physical world simulation. This kind of workload
has been traditionally implemented on diverse types of grids and
meshes that can be modeled as an N -d array [3, 11, 36]. As N -d
array is at the core of array DBMS, it is logical to apply array DBMSs
to physical simulations to benefit from array DBMS capabilities.

Cellular automata seem to be a good starting point for integrating
simulation into array DBMS due to having N -d array model for its
lattice and numerous successful applications for edge detection [16,
21], modeling urban growth [17, 24, 33], fire spread [18, 23, 37], land
cover change [28, 50], road traffic [27, 30, 51], and other phenomena.

To demonstrate the applicability of array DBMS to CA modeling,
we take some of the most challenging CA: traffic CA (TCA). We take
a complex road traffic model with multiple lanes, road intersections
and traffic lights. Vehicles have different lengths, moving directions,
varying speed, can change lanes, directions, and overtake each other.
We show that ChronosDB [43, 44], with extensions, is capable of
effectively dealing with all simulation intricacies.

Unlike ad-hoc CA implementations, array DBMSs may serve as a
framework for CA modeling as they provide numerous capabilities
out-of-the-box, e.g. parallel processing. The support for CA models
can also be a step towards supporting evenmore general approaches
like agent-based modeling [52]. Finally, CA models challenge array
DBMSs helping them to become more robust systems in general.

At a glance, array DBMSs may seem to readily support CA sim-
ulations. However, an array DBMS requires appropriate extensions
to leverage its solid codebase for CA simulations.

Our contributions in this paper are as follows. First of all, we iden-
tify a novel R&D direction and novel application of array DBMSs:
physical world simulation. The very fact of the possibility of an
array DBMS application to end-to-end physical simulations is valu-
able. We believe this may inspire the related future work.

Next we show how to extend ChronosDB [43, 44] to effectively
support CA simulations and provide unique benefits inherent to
array DBMSs and ChronosDB in particular. We showcase that
ChronosDB array DBMS can be used for end-to-end CA simula-
tions, from initialization to computing the resulting statistics (the
goal of CA simulations). Our performance evaluation shows that
ChronosDB is quite efficient for CA simulations compared to a
non-DBMS approach. Finally, we discuss array DBMS benefits for
CA simulations, future R&D opportunities and conclude.

Research Applications Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2399

http://sigmod2021.gis.gg/
https://doi.org/10.1145/3448016.3458457
https://doi.org/10.1145/3448016.3458457

𝑠𝑖 𝑑𝑖𝑗 = 5

𝐿

𝑅
𝑑𝑘𝑝 = 2

𝑠𝑘

𝑠𝑞

𝑊 𝐸

↑ 𝑆

𝑠𝑏

𝑠𝑐

𝑠𝑗

𝑙𝑖 = 3
→ →

𝑑𝑞𝑇𝐿 = 5

𝑇𝐿
𝑑𝑏𝑐 = 2

𝑠𝑝

Figure 1: Traffic Cellular Automata: Physical Environment, Cells’ States & Neighborhoods, and Transition Rules’ Parameters

2 TRAFFIC CELLULAR AUTOMATA (TCA)

Road traffic simulation is used to plan road changes, optimize traffic
lights, analyze throughput, integrate objects to name a few [2]. TCA
yield realistic road traffic statistics at the macroscopic level [30].We
constructed a complex automaton based on the literature [30] to
challenge array DBMS principles, e.g. vehicles have several prop-
erties. Now we describe our model without referring to any array
DBMS. Four main ingredients constitute CA: the physical environ-
ment, cells’ states & neighborhoods, and local transition rules.

2.1 Physical Environment

We consider the entire road network as a 2-d lattice (a 2-d array).
We take a traditional cell size of 7.5 m2 [30]. A lattice cell state
indicates an impassable part, traffic lights, a lane without a vehicle,
or a vehicle with a non-negative speed. We account for vehicles
of different lengths (li denotes the length of vehicle i): a vehicle
occupies an integer number of maximum 3 consecutive cells, fig. 1.

In our model, we also consider road intersections (RIs). Each
road consists of multiple lanes (3 in our model, without loss of
generality). Vehicles are allowed to change lanes, e.g. in order to
overtake a slower-moving vehicle. They can move west-east (WE)
or south-north (SN) and change direction at a RI [30].

In our model, we locate Traffic Lights (TL) at the bottom left at
each RI. TL are red for WE vehicles and green for SN vehicles or
vice versa. In addition, TL can be yellow for all vehicles.

We use a traditional example of a TCA grid: an artificial road
map resembling the Manhattan Grid, New York City, similar to [51].
Initially vehicles are scattered randomly on the grid. When a vehicle
reaches a grid border, it appears at the opposite grid side.

2.2 Cells’ States & Neighborhoods

Cells change their states at discrete time steps (iterations) of 1.2 sec-
onds as in [30]. TCA evolve in time and space by applying rules to
cells. A rule takes into account a cell’s local neighborhood to take
state transition decisions. Rules are applied to all lattice cells simul-
taneously (drivers make decisions independently of each other, in
parallel, but obeying some generally accepted rules).

At each time step, a vehicle can stay in the same cell (no move),
advance some cells forward, change its lane (the same road) or road
(at a RI). The maximum vehicle speed smax = 3 cells/step.

All cells in a window of 11×11 cells constitute the local neighbor-
hood of a cell: the cell itself, 37.5 meters (5 cells) back and forward.

2.3 Local Transition Rules

A rule must check a set of constraints before deciding on the state
change. For example, a rule for the left lane change must check for
too close or fast-moving vehicles on the left to avoid collisions.

Move Forward Rules. TCA often use the Nagel-Schreckenberg
one-dimensionalmodel to advance a vehicle along the same lane [35].
The model defines four rules applied sequentially to the speed sk (t)
and position xk (t) of vehicle k at time step t : (1,2) acceleration and
braking: sk (t) = min{sk (t − 1) + 1,dkp (t − 1) − li , smax − lk + 1},
(3) randomization: random(t) < const ⇒ sk (t) =max{0, sk (t) − 1},
(4) movement: xk (t) = xk (t − 1) + sk (t), where dkp is the distance
(number of cells) to the nearest vehicle p ahead of vehicle k .

Here a vehicle can stop directly behind a vehicle in front of it
to avoid collisions. Rule 3 accounts for individual driver behavior.
Note that the original model did not account for vehicle lengths.

Lane Change Rules. Let us first describe lane changing rules
from [30] which we will further complicate. A left/right lane change
means shifting a vehicle a cell left/right. Certain constraints must be
met to make the left lane change possible for vehicle j: di j − li > 0.
This requires that there is no vehicle directly in the left cell and the
closest vehicle i in the left lane, behind vehicle j , is at least one cell
away [30]. Note that we added li to the original constraints.

We extend the constraint to account not only for inter-vehicle
distance di j , but also for vehicle speed si and allow left lane change
if di j − li − si > 0, fig. 1. The right lane change rule is the same.

In ourmodel, we allow a left lane change for vehicle j if a vehicleq
in front of j is moving slower, e.g. sq < sj , fig. 1. To avoid scheduling
conflicts, left and right lane changes are allowed only during odd
and even time steps respectively. All lane changes are probabilistic.

Traffic light rules. TL help to avoid collisions at RIs. In our
model, TL are green for γ = 10 ticks and turn yellow afterwards.
TL are yellow until there are vehicles at the RI. Then TL turn green
for the road for which TL were red before the yellow light. Vehicles
apply an additional rule to account for TL: if TL are red or yellow,
sq (t) = min(max(dqT L − lq , 0), sq (t)), where dqT L is the distance
to the nearest TL on the road ahead, fig. 1.

Road Crossing Rules. At a RI, in our model, a vehicle goes
forward if it is not in an outer lane of a road. Otherwise, a WE/SN
vehicle may randomly decide to go forward or turn left/right if it
is in the left/right-most lane. Before turning, a vehicle checks for
sufficient space in the lane to the left/right: dbc > lb , where dbc is
the distance to the nearest vehicle in the lane to the left/right, fig. 1.

Research Applications Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2400

Figure 2: Convolution Window, Speed of ChronosDB vs. Hand-Written Code, Native Array DBMS UDF for the Simulations

3 TRAFFIC SIMULATION BY ARRAY DBMS

Now we describe a holistic simulation workflow and answer the
following questions. Which capabilities, relevant to CA simulations,
do modern array DBMSs provide? Why can they not be readily ap-
plied to CA simulations? Which novel extensions did we develop to
enable end-to-end CA simulations completely inside ChronosDB?
Why is ChronosDB one of the best choices for CA simulations?

3.1 Simulation Setup

Let a 2-d array be the mapping A : D1 × D2 7→ T, Di = [0, li) ⊂ Z,
0 < li is a finite integer, i ∈ {1, 2}, and T is a numeric type, e.g.
according to ISO/IEC 14882. li is said to be the size of ith dimension.
We refer to a cell value of A of type T with integer indexes (x1, x2)
as A[x1, x2], where xi ∈ Di . We denote a missing value by NA [43].

The physical environment and cells’ states can be modeled as 2-d
arrays. Novel array DBMS extensions are driven by our new flexible
convolution operator and native UDF language enabling us to apply
local transition rules and code the simulation logic respectively.

Input: 2-d arrays (lat × lon): tca.lane (road grid, cell values are
−1: impassable area, 0/1: a lane with WE/SE moving direction, 2: a
road intersection, 3: traffic lights), tca.speed and tca.length (ini-
tial vehicles’ speeds and lengths, a vehicle of any length is modeled
by a cell having its rear bumper; note that we do not store vehicle
positions explicitly as they are implicitly coded by cell coordinates).

Output: history 3-d arrays (time × lat × lon): speedh and lenh
(vehicles’ speeds and lengths for each time step).

Goal: run the simulations for T time steps to derive statistics
from history arrays (section 3.6) for decision support (section 2).

3.2 Novel Convolution Operator

A CA rule resembles a traditional convolution operator (CO) [48].
However, a CA rule is muchmore complex: it is a procedure account-
ing for constraints and updating any cells within the neighborhood.
To support CA simulations, we introduce a new CO for array DBMS.

The convolution operatorΞ : K,A1,A2, . . . ,An 7→ B1,B2, . . . ,Bm
takesn input and yieldsm output 2-d arrays, all shaped l1×l2. A ker-
nel K ⟨k1,k2⟩ is the mapping K : ax1 ,a

x
2 , . . . ,a

x
n 7→ bx1 ,b

x
2 , . . . ,b

x
m

of n input (windows ofAj ,fig. 2) andm output 2-d arrays, all shaped
2k1+1×2k2+1, indexed by (y1,y2) : yi ∈ [−ki ,+ki] ⊂ Z, axj [y1,y2]
= Aj [x1 + y1, x2 + y2], j ∈ [1,n], axj [y1,y2] = NA if xi + yi < Di ,
ki 6 |li | div 2, Bq [u1,u2] ∈ {bxq [y1,y2] : xi + yi = ui } (choose the
latest produced value), where q ∈ [1,m], x = (x1, x2), xi ,ui ∈ Di .

To compute K , users provide UDFs in Java. ChronosDB iterates
overxi ∈ Di , forms readonly input andwritable output windows, all
equipped with helper functions, e.g. rotate 90/180/270° (adjusts the
local coordinate system to use the same code for WE/SN vehicles).

There were efforts to develop dedicated languages for CA, but
CA rules are inherently imperative and sophisticated. To date, it is
more practical to use a modern language for convolution UDFs.

Unlike conventional convolution operators, our CO supplies a
kernel several input windows and allows a kernel to modify an
arbitrary number of cells throughout multiple output windows.
However, this requires novel array retiling strategy (see below).

3.3 Native UDF Language for Array DBMS

We present the first native array DBMS language for UDFs. Al-
though most array DBMSs can run Python/C++ UDFs, they are
treated as black-boxes that cannot be optimized by DBMSs [6, 12,
43]. In addition, query languages and non-native UDFs are unable
to organize iterations inherent to physical simulations. It is possi-
ble to run iterations query by query, but a query output must be
completely materialized before running the next query and looking-
ahead optimizations are unavailable as the “big picture” is unclear.

With strict formal definitions of array operations [43], compiler
techniques (e.g., loop unrolling [1]), and our new extensions (e.g.,
array versioning & locks), we build execution plans for several iter-
ations ahead (proactive exec plans). In this way we avoid redundant
materialization and overheads of scheduling individual queries.

Native UDFs consist of commands that have the syntax similar
to command line tools. Most users are familiar with such syntax
and hopefully will find it easy to code UDFs. A part of the UDF for
TCA simulations is in fig. 2. To retain the initial arrays, we start
by copying tca.speed & tca.length to intermediate $speed &
$length arrays which are subject to optimizations, e.g. they mostly
reside in RAM. The loop will be executed 100 times.

The calc command runs a convolution operator that is supplied
as a Java UDF: a *.java file that contains the specified method. The
file is compiled to bytecode by ChronosDB for faster execution.
calc accepts/produces an arbitrary number of input/output arrays,
where the -ot parameter specifies T. Quantiles :in and :out dis-
tinguish between the in/out arrays as their number is not fixed. The
--overwrite flag forces calc to delete the output arrays if they
exist and create new output arrays with the same name.

An iteration ends by appending new 2-d arrays $speed& $length
to 3-d arrays speedh & lenh along the virtual time axis (see below).

Research Applications Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2401

The UDF in fig. 2 looks small, but is challenging to execute. For in-
stance, during loop unrolling, the same array name appears several
times: e.g., the last calc command deletes the current $speed array
and creates a new array with the same name. As we are building a
proactive exec plan, we must be able to keep and address all arrays
(deleted and new) and to read/write all of them simultaneously.

3.4 Additional Improvements

Novel Retiling Strategy. Array DBMSs partition arrays into tiles
to parallelize execution [32]. To support traditional COs, arrays
are tiled with overlap [48]. However, our CO can update any set
of cells: vehicles do not disappear and can move between the tiles.
Hence, current tiling schemes are unsuitable for the new workload.
To enable parallel CA simulations, we equipped ChronosDB with
a new array retiling strategy to properly update array tiles and
efficiently exchange cell values between the tiles at each iteration.

Array Versioning. To maintain several arrays with the same
name during runtime, we introduced array versioning. ChronosDB
refers to an array by its name and version. This allows us to build
execution plans with deleted arrays upon which depend future, but
not yet produced arrays. This is totally transparent to users, but
required deep improvements to ChronosDB.

Array Locks are required for two reasons: to prevent other
UDFs to operate on arrays from the common namespace and to
control the state of arrays (exists, deleted, newer version created,
etc.). Locks are always used in conjunction with array versioning.

Virtual axes. A traditional implementation of the append op-
erator in fig. 2 coverts the input 2-d array into a 3-d form and
may restructure the target 3-d array [12]. As append is frequent
in our scenario, this may incur a large overhead. We introduced
virtual axes which allow us to avoid restructuring arrays during
split/merge operations, e.g. converting an N -d array to an (N +1)-d
array. A virtual axis does not physically exist in an array and the
cost of append is equal to copying an array. Note that we also
extended ChronosDB to run operators on arrays with virtual axes.

3.5 Performance evaluation

We compared ChronosDB to a hand-written single-threaded code.
Many TCA implementations are not maintained [8], not freely
available [2], or do not implement the same set of rules as our
model [34]. Hence, we ran the Java UDFs outside ChronosDB on
input arrays shaped 4096 × 256 (Intel Core i5 2.5GHz, Windows 10,
256 GB SSD, 12 GB RAM). “DBMS Serial” shows no parallelization
capabilities, “DBMS Parallel” runs simulations in 2 threads, fig. 2.

A considerable portion of time is spent for scheduling when the
number of iterations is small. Almost 10 seconds is spent on com-
piling the Java UDFs. However, the performance of ChronosDB
becomes comparable to a hand-written code when the number of
threads and iterations increase. Please, recall that ChronosDB does
not only run the simulations, but also provides many other benefits.

3.6 Array DBMS Shortcomings & Benefits

3.6.1 Shortcomings. Currently, ChronosDB introduces schedul-
ing overhead to CA simulations and users need to write 2 types of
UDFs: in Java and a new, but relatively simple language. Hence, nu-
merous benefits outweigh a few ‘cons’ against using ChronosDB.

3.6.2 Benefits. Nowwe showcase the benefits of usingChronosDB
for CA simulations. In this way, we also answer the question why
ChronosDB is an excellent choice for this workload.

Data ingestion and fusion. CA rules may use other datasets,
e.g. Digital Elevation Model or Surface Temperature (ST). To illus-
trate this benefit, we added a rule random(t) < const & ST < θ ⇒

sk (t) = max{0, sk (t) − 1} (too low ST may slow down a vehicle):
note the tca.temperature array in fig. 2. We used ChronosDB to
prepare (ingest, resample, and slice) Landsat 8 satellite data for ST.

Automatic parallelization. ChronosDB partitions arrays into
subarrays and runs the simulation independently on subarrays in
parallel, managing all necessary data exchanges between them.

Debugging UDFs. It is easy to debug step-by-step TCA UDFs
in Java used for calc commands, e.g. in IntelliJ IDEA. Just put
TCA.java in a module visible for the IDE. Its powerful debugger
makes it easy to code UDFs, track TCA decisions, and explore
convolution windows rendered by toString() as ascii 2-d maps
showing nearby vehicles’ speeds/lengths/locations & traffic lights.

Interactive visualization is essential for data understanding.
ChronosDB provides array imagery via the open, popular proto-
col [56]. We extended ChronosDB to serve N -d arrays via WMTS,
so itsWebGUI [44] can now queryChronosDB to slice speedh/lenh
and show $speed/$length for iteration step i on an interactive web
map or animate speedh/lenh for all steps; see the paper homepage.

Data management: archive, query & compare the simulations.
Interoperability. ChronosDB storage layer is built on top of

raw files in standard formats. Simulation arrays are full-fledged,
georeferenced, GeoTIFF files readily accessible to other software.
ChronosDB is also an HTTP server: users can download any array
via HTTP. To showcase the benefit, at the paper homepage, we
visualized simulation arrays in QGIS [41], a free and popular GIS.
It is also possible to add ChronosDB as a WMTS layer in QGIS.

End-to-end simulations. ChronosDB serves all phases of the
simulations within the single system: even computing statistics (the
goal of simulations). For example, typical TCA simulation statistics
include mean traffic density (the mean number of vehicles which
passed through a cell) and space-mean speed (the mean vehicle
speed for each cell) [30, 51]. A user can use an aggregation operator
to compute those and interactively explore the results via WMTS.

4 CONCLUSIONS AND R&D OPPORTUNITIES

We presented a novel application of array DBMSs: physical simula-
tions. As an example, we used road traffic cellular automata (TCA).
For the first time, physical simulations run entirely inside an array
DBMS. We had to introduce several extensions to the ChronosDB
array DBMS to enable the simulations. It provides a wealth of ben-
efits like automatic parallelization and interoperability.

Our work provides a number of future R&D opportunities. For
example, load balancing strategies are required for irregularly dis-
tributed objects in input arrays. Efficient storage of sparse arrays
would be beneficial (currently the grid array has only 5 distinct val-
ues stored uncompressed). Novel indexing techniques could allow
skipping batches of missing values to avoid wasting iteration time.

Future work includes the application of array DBMSs to other
fields like edge detection, fire spread, urban growth, land cover
change, and other areas of cellular automata simulation.

Research Applications Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2402

REFERENCES

[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles,
techniques. Addison wesley 7, 8 (1986), 9.

[2] AnyLogic. 2021. https://www.anylogic.com/road-traffic/
[3] Venkatramani Balaji, Alistair Adcroft, and Zhi Liang. 2019. Gridspec: A standard

for the description of grids used in Earth System models. In arXiv.
[4] Leilani Battle, Remco Chang, and Michael Stonebraker. 2016. Dynamic prefetch-

ing of data tiles for interactive visualization. In Proceedings of the 2016 Interna-
tional Conference on Management of Data. 1363–1375.

[5] Peter Baumann et al. 2016. Big data analytics for Earth sciences: the EarthServer
approach. International Journal of Digital Earth 9, 1 (2016), 3–29.

[6] Peter Baumann, Andreas Dehmel, Paula Furtado, et al. 1998. The multidimen-
sional database system RasDaMan. In Proceedings of the 1998 ACM SIGMOD
international conference on Management of Data. 575–577.

[7] ArcGIS book. 2021. https://learn.arcgis.com/en/arcgis-imagery-book/
[8] Cellular Automaton Traffic Simulation. 2021. http://udel.edu/~mm/traffic/ca.html
[9] Chialin Chang, Bongki Moon, Anurag Acharya, Carter Shock, Alan Sussman,

and Joel Saltz. 1997. Titan: a high-performance remote-sensing database. In
Proceedings 13th International Conference on Data Engineering. IEEE, 375–384.

[10] Dalsu Choi, Chang-Sup Park, and Yon Dohn Chung. 2019. Progressive top-k
subarray query processing in array databases. PVLDB 12, 9 (2019), 989–1001.

[11] CF Conventions. 2021. https://cfconventions.org/.
[12] Philippe Cudré-Mauroux, Hideaki Kimura, K-T Lim, Jennie Rogers, et al. 2009. A

demonstration of SciDB: a science-oriented DBMS. PVLDB 2, 2 (2009), 1534–1537.
[13] Dask 2021. https://dask.org/.
[14] David J DeWitt, Navin Kabra, Jun Luo, Jignesh M Patel, and Jie-Bing Yu. 1994.

Client-Server Paradise. In VLDB, Vol. 94. 558–569.
[15] Jennie Duggan, Aaron J Elmore, Michael Stonebraker, Magda Balazinska, et al.

2015. The BigDAWG Polystore System. ACM SIGMOD Record 44, 2 (2015), 11–16.
[16] Mohammad Farbod, Gholamreza Akbarizadeh, Abdolnabi Kosarian, and Kazem

Rangzan. 2018. Optimized fuzzy cellular automata for synthetic aperture radar
image edge detection. Journal of Electronic Imaging 27, 1 (2018), 013030.

[17] Yongjiu Feng and Xiaohua Tong. 2020. A new cellular automata framework
of urban growth modeling by incorporating statistical and heuristic methods.
International Journal of Geographical Information Science 34, 1 (2020), 74–97.

[18] Joana Gouveia Freire and Carlos Castro DaCamara. 2019. Using cellular automata
to simulate wildfire propagation and to assist in firemanagement. Natural hazards
and earth system sciences 19, 1 (2019), 169–179.

[19] GeoTrellis 2021. https://geotrellis.io/.
[20] Noel Gorelick et al. 2017. Google Earth Engine: Planetary-scale geospatial analysis

for everyone. Remote Sensing of Environment 202 (2017), 18–27.
[21] MinHan, Xue Yang, and Enda Jiang. 2016. An Extreme LearningMachine based on

Cellular Automata of edge detection for remote sensing images. Neurocomputing
198 (2016), 27–34. https://doi.org/10.1016/j.neucom.2015.08.121 Advances in
Neural Networks, Intelligent Control and Information Processing.

[22] Olha Horlova, Abdulrahman Kaitoua, and Stefano Ceri. 2020. Array-based Data
Management for Genomics. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE). IEEE, 109–120.

[23] Wenyu Jiang, Fei Wang, Linghang Fang, Xiaocui Zheng, Xiaohui Qiao, Zhanghua
Li, and Qingxiang Meng. 2021. Modelling of wildland-urban interface fire spread
with the heterogeneous cellular automata model. Environmental Modelling &
Software 135 (2021), 104895.

[24] Jennifer Koch, Monica A Dorning, Derek B Van Berkel, Scott M Beck, Georgina M
Sanchez, Ashwin Shashidharan, Lindsey S Smart, et al. 2019. Modeling landowner
interactions and development patterns at the urban fringe. Landscape and Urban
Planning 182 (2019), 101–113.

[25] Susana Ladra et al. 2017. Scalable and queryable compressed storage structure
for raster data. Information Systems 72 (2017), 179–204.

[26] Adam Lewis et al. 2017. The Australian Geoscience Data Cube—Foundations and
lessons learned. Remote Sensing of Environment (2017), 276–292.

[27] Meiyu Liu and Jing Shi. 2019. A cellular automata traffic flow model combined
with a BP neural network based microscopic lane changing decision model.
Journal of Intelligent Transportation Systems 23, 4 (2019), 309–318.

[28] Yuting Lu et al. 2019. Detection and prediction of land use/land cover change
using spatiotemporal data fusion and the Cellular Automata–Markov model.
Environmental monitoring and assessment 191, 2 (2019), 68.

[29] Hermano Lustosa, Fabio Porto, and Patrick Valduriez. 2019. SAVIME: A Database
Management System for Simulation Data Analysis and Visualization.

[30] Sven Maerivoet and Bart De Moor. 2005. Cellular automata models of road traffic.
Physics reports 419, 1 (2005), 1–64.

[31] John Mainzer et al. 2019. Sparse Data Management in HDF5. In XLOOP. 20–25.
[32] Parmita Mehta, Sven Dorkenwald, Dongfang Zhao, Tomer Kaftan, Alvin Cheung,

Magdalena Balazinska, Ariel Rokem, Andrew Connolly, Jacob Vanderplas, and

Yusra AlSayyad. 2017. Comparative evaluation of big-data systems on scientific
image analytics workloads. PVLDB 10, 11 (2017), 1226–1237.

[33] Hossein Shafizadeh Moghadam and Marco Helbich. 2013. Spatiotemporal urban-
ization processes in the megacity of Mumbai, India: A Markov chains-cellular
automata urban growth model. Applied Geography 40 (2013), 140–149.

[34] MovSim. 2021. https://github.com/movsim/movsim
[35] Kai Nagel and Michael Schreckenberg. 1992. A cellular automaton model for

freeway traffic. Journal de physique I 2, 12 (1992), 2221–2229.
[36] Stefano Nativi et al. 2008. Unidata’s Common Data Model mapping to the ISO

19123 Data Model. Earth Sci. Inform. 1 (2008), 59–78.
[37] Vasileios G Ntinas, Byron E Moutafis, Giuseppe A Trunfio, and Georgios Ch

Sirakoulis. 2017. Parallel fuzzy cellular automata for data-driven simulation of
wildfire spreading. Journal of computational science 21 (2017), 469–485.

[38] Carlos Ordonez, Yiqun Zhang, and S Lennart Johnsson. 2019. Scalable machine
learning computing a data summarization matrix with a parallel array DBMS.
Distributed and Parallel Databases 37, 3 (2019), 329–350.

[39] Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy Mattson.
2016. The TileDB Array Data Storage Manager. PVLDB 10, 4 (2016), 349–360.

[40] PostGIS 2021. http://postgis.net/.
[41] Quantum GIS. 2021. https://www.qgis.org/.
[42] Lucas C Villa Real, Bruno Silva, et al. 2019. Large-scale 3D geospatial process-

ing made possible. In Proceedings of the 27th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. 199–208.

[43] Ramon Antonio Rodriges Zalipynis. 2018. ChronosDB: Distributed, File Based,
Geospatial Array DBMS. PVLDB 11, 10 (2018), 1247–1261.

[44] Ramon Antonio Rodriges Zalipynis. 2019. ChronosDB in Action: Manage,
Process, and Visualize Big Geospatial Arrays in the Cloud. In Proceedings of
the 2019 International Conference on Management of Data, SIGMOD Confer-
ence 2019, Amsterdam, The Netherlands, June 30-July 5, 2019. ACM, 1985–1988.
https://doi.org/10.1145/3299869.3320242

[45] Ramon Antonio Rodriges Zalipynis. 2019. Evaluating Array DBMS Compression
Techniques for Big Environmental Datasets. In 2019 10th IEEE International
Conference on Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications (IDAACS), Vol. 2. IEEE, 859–863. https://doi.org/10.
1109/IDAACS.2019.8924326

[46] Ramon Antonio Rodriges Zalipynis. 2020. BitFun: Fast Answers to Queries with
Tunable Functions in Geospatial Array DBMS. PVLDB 13, 12 (2020), 2909–2912.

[47] Ramon Antonio Rodriges Zalipynis. 2021. Towards Machine Learning in Dis-
tributed Array DBMS: Networking Considerations. In Machine Learning for
Networking (Lecture Notes in Computer Science, Vol. 12629). 284–304. https:
//doi.org/10.1007/978-3-030-70866-5_19

[48] Ramon Antonio Rodriges Zalipynis et al. 2018. Array DBMS and Satellite Imagery:
Towards Big Raster Data in the Cloud. In Analysis of Images, Social Networks and
Texts – 6th International Conference, AIST 2017, Moscow, Russia, July 27-29, 2017,
Revised Selected Papers (Lecture Notes in Computer Science, Vol. 10716). Springer,
267–279. https://doi.org/10.1007/978-3-319-73013-4_25

[49] Oracle Spatial. 2020. oracle.com/database/technologies/spatialandgraph.html.
[50] Xiaohua Tong and Yongjiu Feng. 2020. A review of assessment methods for

cellular automata models of land-use change and urban growth. International
Journal of Geographical Information Science 34, 5 (2020), 866–898.

[51] Ozan K Tonguz et al. 2009. Modeling urban traffic: a cellular automata approach.
IEEE Communications Magazine 47, 5 (2009), 142–150.

[52] Martin Treiber and Arne Kesting. 2013. Traffic Flow Dynamics: Data, Models and
Simulation. Springer-Verlag Berlin Heidelberg.

[53] Sebastian Villarroya and Peter Baumann. 2020. On the Integration of Machine
Learning and Array Databases. In ICDE. IEEE, 1786–1789.

[54] Yi Wang, Arnab Nandi, and Gagan Agrawal. 2014. SAGA: Array storage as a DB
with support for structural aggregations. In Proceedings of the 26th International
Conference on Scientific and Statistical Database Management. 1–12.

[55] Climate Wikience. 2021. http://www.wikience.org/.
[56] WMTS. 2021. https://www.opengeospatial.org/standards/wmts.
[57] Haoyuan Xing and Gagan Agrawal. 2020. Accelerating array joining with inte-

grated value-index. In Proceedings of the 31st International Conference on Scientific
and Statistical Database Management. 145–156.

[58] Weijie Zhao et al. 2016. Similarity join over array data. In Proceedings of the 2016
International Conference on Management of Data. 2007–2022.

[59] Weijie Zhao, Florin Rusu, Bin Dong, KeshengWu, Anna YQHo, and Peter Nugent.
2018. Distributed caching for processing raw arrays. In Proceedings of the 30th
International Conference on Scientific and Statistical Database Management. 1–12.

[60] Weijie Zhao, Florin Rusu, Bin Dong, Kesheng Wu, and Peter Nugent. 2017. In-
cremental view maintenance over array data. In Proceedings of the 2017 ACM
International Conference on Management of Data. 139–154.

Research Applications Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2403

https://www.anylogic.com/road-traffic/
https://learn.arcgis.com/en/arcgis-imagery-book/
http://udel.edu/~mm/traffic/ca.html
https://cfconventions.org/
https://dask.org/
https://geotrellis.io/
https://doi.org/10.1016/j.neucom.2015.08.121
https://github.com/movsim/movsim
http://postgis.net/
https://www.qgis.org/
https://doi.org/10.1145/3299869.3320242
https://doi.org/10.1109/IDAACS.2019.8924326
https://doi.org/10.1109/IDAACS.2019.8924326
https://doi.org/10.1007/978-3-030-70866-5_19
https://doi.org/10.1007/978-3-030-70866-5_19
https://doi.org/10.1007/978-3-319-73013-4_25
oracle.com/database/technologies/spatialandgraph.html
http://www.wikience.org/
https://www.opengeospatial.org/standards/wmts

	Abstract
	1 Introduction
	2 Traffic Cellular Automata (TCA)
	2.1 Physical Environment
	2.2 Cells' States & Neighborhoods
	2.3 Local Transition Rules

	3 Traffic Simulation by Array DBMS
	3.1 Simulation Setup
	3.2 Novel Convolution Operator
	3.3 Native UDF Language for Array DBMS
	3.4 Additional Improvements
	3.5 Performance evaluation
	3.6 Array DBMS Shortcomings & Benefits

	4 Conclusions and R&D Opportunities
	References

